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Introduction to Part II

1 i nt roduct i on

Reasoning about time is an essential competence that all humans possess and a
signature of intelligent behavior in any cognitive system. Our ability to represent
temporal knowledge of actions and events in the world is essential for modeling cau-
sation, constructing complex plans, hypothesizing possible outcomes of actions, and
almost any higher-order, cognitive task. It is not surprising, therefore, that temporal
reasoning has been a central area of research in artificial intelligence since the 1960s.
This overview of Part II will situate some of the work on temporal reasoning, particu-
larly certain aspects that are especially relevant to natural language processing. As we
have seen in Part I, natural language expresses temporal information through tense,
aspect, temporal adverbials, and other devices. Motivated by linguistic considerations,
Part I introduced constraint- and logic-based formalisms for analyzing tense, and event
ontologies for representing event classes and structure. These mechanisms were applied
in some cases to identification of the temporal location of events mentioned in text.
We now turn from linguistic considerations to considerations motivated by artificial
intelligence in general.

The problems of temporal reasoning involve in part, as in natural language, locating
events in time. Thus, given the narrative,

(1) a. Yesterday, John fell while running.
b. He broke his leg.

a natural language system may seek to anchor the falling, running, and breaking events
to the particular time (yesterday), as well as order the events relative to each other, e.g.
the running precedes the falling, which precedes the breaking. Temporal reasoning is
therefore concerned with representing and reasoning about such anchoring and ordering
relationships. Temporal reasoning is also concerned with creating the most appropriate
formalisms for representing events, states, and their temporal properties. However, the
particular form of temporal representation depends on the type of reasoning problem
under consideration. In common-sense inference, for example, knowing that the falling
occurred before breaking, and that the falling occurred yesterday (facts obtained here
from linguistic data), along with common-sense knowledge of the behavior of breakings
and fallings, may allow a system to infer that the falling precedes and causes the
breaking, and that these events occurred yesterday. In planning, on the other hand, a
given outcome is desired (e.g. a robot arriving at a crater), and common-sense know-
ledge of the behavior of events and states (such as landing, avoiding obstacles, etc.) may
allow one to infer what needs to happen when.

Historically, temporal reasoning developed largely out of the planning community in
AI, but the ability to perform temporal reasoning in knowledge-intensive environments



is critical for many diverse applications. Some of these are listed below:

1. Maintaining temporal consistency in a knowledge base;
2. Temporal question-answering (cf. Androutsopoulos et al. 1998);
3. Scheduling tasks and events; and
4. Causal diagnosis.

There are four features that typically distinguish the structure of time within a model of
temporal reasoning:

1. Primitive time unit: the choice of instants (i.e. points) or intervals (i.e. periods) as
temporal markers of the flow of time.

2. Branching: whether different time-lines are possible or not.
3. Discreteness: the choice of whether to represent time as a collection of discrete

elements, or else as an element between two points.
4. Boundedness: whether time is infinite or finite in each direction.

Each of these issues is addressed in distinct ways in the frameworks represented in this
part. Most early approaches to AI, beginning with the frameworks (to be discussed
below) of the Situation Calculus (McCarthy and Hayes 1969), the Event Calculus
(Kowalski and Sergot, Chapter 10), and also early work in planning (McDermott,
Chapter 9), assumes instants to be basic. Other studies, including the papers in this part
by Allen and by Hobbs and Pustejovsky, take intervals to be basic.

A flow of time that is a strict partial ordering is said to be linear if any two distinct
points are related. A branching model of time can be said to be branching to the future if
there is some point that has two unrelated points in its future. Similar remarks hold for
the flow of time in the past. When a structure does not branch to the future or the past, it
is called a nonbranching (or linear) structure of time. Typically, model-theoretic treat-
ments of tense and aspect in language assume a nonbranching past and possible
branching futures. Dowty (1979), for example, invokes the nonlinearity of intensional
states inherent in a Montague-style treatment of the progressive, e.g. ‘John is crossing
the street.’ The future branches to many world-time pairs, some of which are inertially
closer to achieving the goal state than others. Irrealis contexts also typically require
some form of branching future (cf. van Bentham 1983).

Regarding discreteness of time: a dense flow of time exists when, between any two
distinct points, there is a third point. A discrete flow supposes that time proceeds in
discrete steps, where there is a well-defined next point or period. Finally, the feature of
boundedness addresses the issue of the beginning- and end-points in the structure
modeling the flow of time. Typical models assume a bounded past and an unbounded
future.

The goals of an approach and the specifics of a particular reasoning task will often
dictate the choice of one’s temporal primitives. For example, from a logical stand-
point, instants are attractive since we understand the idea of truth at an instant, but the
notion of truth at an interval requires further explication. Dean and McDermott (1987)
argue that instants are more efficient for reasoning within temporal database manage-
ment systems. For reasoning about continuous change, as Galton shows in this part
(Chapter 13), we need a notion of durationless events, thus arguing for instants. Galton’s
paper shows how it is possible to represent intervals in terms of points or have a point-
based theory that represents intervals. The differences between point-based and interval-
based models have been discussed in considerable detail, for example, in van Bentham
(1983) and Shoham (1989).
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Each of the temporal reasoning formalisms represented here differs in its expres-
siveness and efficiency for reasoning about natural language problems. The require-
ments of a particular reasoning task will largely dictate the topology of time needed, and
determine the appropriateness of the data structures and inference rules used. Although
early work on natural language was formulated in terms of the basic framework of the
Situation Calculus (as with McDermott ’s paper), most work on the temporal inter-
pretation of text and discourse has assumed some sort of Allen-style interval calculus.
The expressiveness inherent in the interval calculus has meshed well with much of the
recent work on tense and aspect interpretation in linguistic semantics (e.g. Leith and
Cunningham, 2001).

2 t em por al log ic

A temporal logic allows one to use the representation and inference mechanisms of logic
to reason about time. For this to happen, temporal information needs to be added to the
logic. From a logical standpoint, there are two ways to provide for a temporal inter-
pretation of a proposition:

1. Add a modal operator over the propositional expression, so that temporal
order is interpreted from the syntactic combination of operators over
expressions;

2. Add an additional argument to the predicative expression, one representing time
directly as a point or period, or as a time-dependent individual, such as an
event.

The latter approach will be discussed below under the Situation Calculus (Section 3).
In Part I, we introduced an instance of the first approach, that taken by Prior in the
construction of Minimal Tense Logic, known as Kt. In such systems, operators play
the combined role of verbal tense, temporal adverbials, as well as temporal prepositions
and connectives. For Kt, four axioms form the core knowledge about temporal relations
(as already stated in the Introduction to Part I):

a. �!H F�: What is, has always been going to be;
b. �!G P �: What is, will always have been;
c. H(�! )! (H�!H ): Whatever always follows from what always has

been, always has been;
d. G(�! )! (G�!G ): Whatever always follows from what always will

be, always will be.

F and P are usually referred to as weak operators. They can be defined in terms of the
other two as follows: F�¼:G:�; P�¼:H:�. Kt becomes a complete inference system
when the two rules of temporal inference below are added to the rules of propositional
logic:

(3) a. From a proof of �, derive a proof of H�.
b. From a proof of �, derive a proof of G�.

To reason about the truth of expressions in a propositional tense logic, we construct a
model, where our interpretation functions (or valuations) make reference to moments of
time. Let us define a temporal frame as consisting of T, a set of moments in time, and an
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ordering relation R, the earlier than relation. The truth value of an atomic formula � can
be determined relative to a frame, according to the following rules:

(4) a. VM,t(G�)¼ 1 iff for every ti �T such that tRti: VM,ti
(�)¼ 1

b. VM,t(F�)¼ 1 iff for some ti �T such that tRti: VM,ti
(�)¼ 1

c. VM,t(H�)¼ 1 iff for every ti �T such that tiRt: VM,ti
(�)¼ 1

d. VM,t(P�)¼ 1 iff for some ti �T such that tiRt:VM,ti
(�)¼ 1

Examples of the tense logic as applied to natural language sentences are given
below:

(5) a. John will have left Boston.
F(P(leave( j, b)))

b. John was going to leave to Boston.
P(F(leave( j, b)))

Using the model described, we can determine the truth-conditions of the propositional
expression for each sentence above. For example, for (5a), we have the following
valuation:

(6) a. VM,t(P(leave( j, b)))¼ 1 iff for some ti �T s.t. tiRt: VM,ti
((leave( j, b)))¼ 1

b. VM,t(F(P( leave( j , b)))) ¼ 1 iff for some t i �T s.t. tRti : VM,t i
((P

(leave( j, b))))¼ 1

Intuitively, this states that the expression is true if, at some moment of time, t1, after now
(t0), there is a moment of time, t2, before t1, such that ‘John leaves Boston’ is true.
A problem with Kt, as already pointed out in Part I above, is that there is no explicit
notion of the present. Notice that in the model above, we just assumed that the base
from which we are performing the valuation is conveniently assumed to be the present.
This will not be sufficient when we need to model a more dynamic and expansive notion
of the present for reasoning tasks.

2.1 Extensions to tense logic

There have been many extensions and modifications to the basic form of the Proposi-
tional Tense Logic of System Kt. One major addition was introduced by Kamp (1968),
namely the binary temporal operators S (since) and U (until).

(7) a. S� :  has been true since a time when � was true.
b. U� :  will be true until a time when � is true.

These operators have become standard within computer science in the area of temporal
database reasoning systems (as discussed in Manna and Pnueli 1992, and Baudinet et al.
1993), where persistence of database updating functions over relations can be modeled
with S and U, e.g. ‘Smith has been manager of Dept. A since Smith was promoted to
manager.’

In the 1970s, temporal logic was adopted by computer scientists working in program
verification and specification as a standard methodology for program analysis. Pnueli
(1977) is one of the first major works in this area, and the growing importance of
temporal logic, interval temporal logic, and other extensions to tense logic, is seen in
their role in modeling reactive and hybrid systems in computer science (cf. Gabbay et al.
1995 for extensive discussion).
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An example of this is Interval Temporal Logic (ITL), which is a notation for both
propositional and first-order reasoning about periods of time as used in descriptions of
hardware and software systems. ITL is able to handle both sequential and parallel
composition and offers proof techniques for reasoning about program properties
involving safety and liveness. Safety states that something bad will not happen, while
liveness properties assert that something good will eventually happen.

3 s i tuat i on calculus

Perhaps the most widely adopted attempt to model action and change in the early days
of AI was the situation calculus (McCarthy 1963, 1968; McCarthy and Hayes 1969).
This model represents actions and their effects on the world. The world is represented as
a set of situations, which model the possible configurations of the world at a particular
time. In this sense, there is a strong similarity between possible worlds (Carnap 1947)
and situations, although no semantics for the latter was spelled out in the early work.
Fluents are time-varying properties of individuals. Actions are functions that map states
to states, and hence act as state transformers.

The situation calculus was used for many different tasks, but was particularly popular
in planning paradigms. The major problems with the classic situation calculus are two
fold: (1) concurrent actions cannot be represented; (2) there is no representation for the
duration of actions or delayed effects of actions. These problems make the pure SC
inadequate for many reasoning tasks, but it has been extended and enriched by
numerous researchers and is still a very active area of research (e.g. Reiter 2001).

There are typically two strategies employed for representing the situation calculus
within a first-order logical representation (FOL): the use of temporal arguments and the
use of metalanguage predicates. The first approach is similar in many respects to
Davidson’s proposal (1967) for event individuation of predicates; in the case of the
Situation Calculus, a state variable is added to every predicate in the language.

The state-based (temporal argument) representation of the Situation Calculus
(where temporally-sensitive variables are employed) interprets events as state transform
functions. Beginning and end states are characterized as predicates with state variables
added. As mentioned above, actions cause state transitions. For example, the state-
based representation of sentence (8),

(8) John gave Lord of the Rings to Mary.

is as illustrated in (9).

(9) a. Have(s1, J, LOTR)
b. Have(s2, M, LOTR)

The initial state is changed by the application of a state transformer, give, modeled as an
initiation rule.

(10) Have(z, y, Result(give(x, y, z), s)))

The second approach to interpreting the Situation Calculus involves the use of meta-
language predicates, which relate the truth value of an expression to a situation. Taking
the example in (8) again, this would entail the following representation:

(11) a. HOLDS(Have(J, LOTR), s1)
b. HOLDS(Have(M, LOTR), s2)
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The HOLDS predicate states that a property is true in a specific situation. States are
changed by Initiate and Terminate actions. The way to express the Initiate action in this
interpretation of SC would be as follows:

(12) HOLDS(Have(z, y), Result(give(x, y, z), s))

This interpretation of the Situation Calculus is more expressive than the temporal
argument approach, since it effectively creates a second-order representation where
predicates can be quantified over. This allows for the treatment of some of the classic
problems in aspectual semantics (see Introduction to Part I).

There are some problems with the Situation Calculus that do not disappear under
either interpretation outlined above. Chief among these is the fact that situations must
be totally ordered, making planning difficult. Frame axioms, rules characterizing the
persistence and effects of actions, as we will discuss in Section 6 below, are trivial to
express in the Situation Calculus; the number of such rules, however, becomes pro-
hibitively large, as they are proportional to the products of the number of fluents and
actions performable over them. In addition, events are not explicitly represented in the
model.

3.1 McDermott’s Use of the Situation Calculus

McDermott’s paper, ‘A Temporal Logic for Reasoning about Processes and Plans’,
(Chapter 9) starts with the general assumptions of the Situation Calculus, but with some
important modifications. McDermott frames his contribution as a temporal model with
a first-order language, in the spirit of Moore (1980) and Hayes (1979). McDermott
assumes the world is defined as discrete situations (states) associated with a date.
Chronicles are states that are coherently structured into a possible history. McDermott
then goes on to define a fact as a set of states wherein a particular proposition is true.

He abandons the classical Situation Calculus (cf. McCarthy (1968)) notion of events
as fact changers, and defines an event as a set of intervals over which a proposition
is minimally true (i.e. it happens once). This will be essentially the same intuition
that Allen adopts for his definition of event. McDermott ’s model assumes points as
primitive, where intervals can be constructed from a totally ordered convex set of states.
This model is continuous (dense time) and has a branching future.

4 ev ent calculus

A somewhat different approach to representing events is taken by Kowalski and Sergot
in their paper, ‘A Logic-based Calculus of Events’ (Chapter 10). This work was
originally intended as a model for database update and narrative understanding, but has
developed into a richer framework for general issues in temporal reasoning and
planning. The main innovation in this model comes in the way that events are repres-
ented. Whereas events are viewed as transformers from state to state in the Situation
Calculus, they are primitives in the Event Calculus, acting as updates on the state of the
world. In this sense they are additive information operations. More specifically, they are
seen as actions that initiate or terminate the properties of individuals (known as fluents,
adopted from the Situation Calculus). As in the Situation Calculus, Kowalski and
Sergot introduce a Holds predicate, which expresses that a property or relationship
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associated with a specific period of time is true during that period. Hence, for some
property, P:

(13) Holds(P)

From this, they define the HoldsAt relation, which expresses that a relation, u, holds at a
specific time instant, t:

(14) HoldsAt(u, t)

To illustrate, let us return to the example from the previous section, of John givingLord of
the Rings to Mary. Intuitively, the initial and goal conditions can be expressed as below.

(15) a. HoldsAt(Have(J, LOTR), t1)
b. HoldsAt(Have(M, LOTR), t2)

The Hold predicate states that a property is assumed to persist until the occurrence
of some event interrupts this property. This is referred to as default persistence. For
example, the event of giving, e0, terminates the relation holding at t1 and then initiates
that relation holding at t2.

(16) a. terminates(e0, Have(J, LOTR))
b. initiates(e0, Have(M, LOTR))

Time in this model is represented as a partially ordered set of points, and the occurrence
of an event is represented by associating it with the time-point at which it occurs. This is
accomplished by a metalanguage predicate happens, where e is an event instance and t is
a time-point:

(17) happens(e, t)

Reasoning in the Event Calculus entails deriving the maximal validity intervals (MVIs)
over which properties hold, as the result of the actions of events. An MVI is maximal if it
cannot be properly contained in any other valid interval.

The paper by Chittaro and Combi (Chapter 11) extends the framework of the Event
Calculus to allow for the representation of events with indeterminant temporal
anchoring and granularity. They introduce a framework they call the Temporal Granu-

larity and Indeterminacy Event Calculus (TGIC) to model these properties. This entails
modifying the algorithm for computing maximal validity intervals to allow satisfaction
under varying levels of granularity of temporal scale (years, months, days, hours, etc.).
This flexibility extends the expressiveness of the Event Calculus to accommodate a
more general concept of event. This is illustrated with examples from a clinical domain,
showing how varying granularities of events using this procedure can facilitate
reasoning.

It should be pointed out that the Event Calculus shares with the Situation Calculus the
basic concepts of property initiation and termination, and these similarities are discussed
in Kowalski (1994). There are some major differences, however, including the following.

1. The Situation Calculus makes use of branching time while the Event Calculus
used linear time.

2. The SC has a notion of previous state that is absent from the EC, by virtue of
the explicit use of situations.

3. State transitions in the SC are functions but not in the EC.

These are explored in more detail in van Belleghem et al. (1995).
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5 all en ’s t em por al i nt e rval alg e br a

One of the most important works in the area of temporal representation and reasoning is
James Allen’s article, entitled ‘Towards a General Theory of Action and Time’ (1984);
see Chapter 12. In this system, temporal intervals are considered primitives and con-
straints (on actions, etc.) are expressed as relations between intervals. There is no
branching into the future or the past. In Allen’s interval algebra, there are thirteen basic
(binary) interval relations, where six are inverses of the other six, excluding equality.

(18) a. before (b), after (bi);
b. overlap (o), overlappedBy (oi);
c. start (s), startedBy (si);
d. finish (f), finishedBy (fi);
e. during (d), contains (di);
f. meet (m), metBy (mi);
g. equality (eq).

These are shown schematically in Figure 1 below.
The reasoning system is supported by a transitivity table, which defines the conjunction
of any two relations. All thirteen relations can be expressed using Meet. For example,
for two periods i and j we can define the relation Before as follows:

(19) Before(i, j) ¼ df 9m[Meets(i, m) ø Meets(m, j)]

5.1 Interpreting intervals

Allen makes a basic distinction between properties, which we have already encountered,
and occurrences, which are inspired by Davidson’s theory of actions and events
(Davidson 1967).

A is EQUAL to B
B is EQUAL to A

A is BEFORE B
B is AFTER A

A MEETS B
B is MET by A

A OVERLAPS B
B is OVERLAPPED by A

A STARTS B
B is STARTED by A

A FINISHES B
B is FINISHED by A

A DURING B
B CONTAINS A

A

B

A
B

A

B

A

B

A

A

B

B

A
B

Fig. 1
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Occurrences are a sort of generalized eventuality category, which divide into two classes:
processes and events.

He then defines metalanguage predicates for each of these three classes.

HOLDS is used to assert that a property is true during a specified temporal interval.

(20) HOLDS( p, t)

is said to be true if and only if the property p holds during the temporal interval t. This
predicate is defined in terms of a downward monotonic subinterval property, shown
below:

(21) HOLDS( p, T)$8t [IN(t, T)!HOLDS( p, t))]

This cannot be said of either kind of occurrence, however. For notice that events do not
have homogeneous behavior for the properties which live on the interval defining that
event. For example, if John dies, then there is a change of state which, as in the situation
and event calculi, has to be represented as an opposition of properties. Allen introduces
the OCCUR relation for events, and defines it as follows (where Allen uses the
expression Pt to refer to the necessary and sufficient set of conditions for an event’s
occurrence in t).

(22) a. OCCUR(e, t)^ IN(t 0, t)!:OCCUR(e, t 0)
b. OCCUR(e, t)$Pt^8t 0[IN(t 0, t)!:Pt 0]

Similarly, because of issues of granularity, even processes are not completely homo-
geneous in the way that properties are. Imagine the process of playing a piano. Those
subintervals when the keys are not being struck are not actual piano playings, hence we
need to have a weaker relation interpreting such classes. This is called OCCURRING
and is defined as follows.

(23) OCCURING(p, t)!9t 0[IN(t 0, t)^OCCURRING( p, t 0))]

5.2 Discussion of Allen’s Theory

The interval algebra as formulated by Allen has enjoyed great favor in natural language
processing and AI. In terms of expressiveness, however, Galton (Chapter 13) argues that
it is inadequate for representing continuous change. In continuous change, objects
occupy locations instantaneously. Galton shows that ‘x is at rest at L’ and ‘x is at L’ are
indistinguishable in Allen’s system, arguing that what one needs is a concept of a
property being true at an instant, without requiring that it be true at any interval
containing or bounding that instant. Galton attempts to revise Allen’s theory based on a
combined instant–interval scheme, where instants fall within or limit intervals. A second
criticism can be made in terms of computational tractability of interval algebras.

class PREDICATE

property HOLDS
event OCCUR
process OCCURRING
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Vilain and Kautz (1986) show that consistency and closure computations in the interval
algebra are NP-hard. However, they also show that part of the interval algebra can be
converted to a point algebra where the computation is tractable (for an application of
such an approach, see Pustejovsky et al. ’s paper on TimeML in Part IV).

6 t em por al r ea s on i ng and th e f r am e problem

There are a number of classic problems that relate to temporal reasoning in environ-
ments where attributes and individuals change as a result of actions. Chief among these
are the following:

1. Frame problem: accounting for those properties of a state that are not changed by
performing a particular action.

2. Ramification problem: the explicit effects (direct or indirect) of performing
an action.

3. Qualification problem: the conditions under which a particular action is applic-
able in the first place.

These problems are often collectively grouped under the first term, the frame problem.
To illustrate what is at play here, consider the give-example from above. The action
of giving makes explicit only who possesses the book at a certain time. Nothing else
about the state of the world is mentioned by this specific action. The frame problem
is that of determining what properties (fluents) are not impacted by an action. For
example, all things being equal, giving a book to someone will not change the color or
weight of the book. All that has basically changed is who has possession of the book.
For all other fluent properties in the situation that we are modeling given the occurrence
of an action, there must be a logical device to allow them to persist. McCarthy and
Hayes (1969) introduced the notion of inertia into the Situation Calculus to account
for these cases. A frame axiom is a rule associated with a particular action or class
of actions that does just this. It keeps the color of the book the same, and so on
(Shanahan 1997). Such persistence axioms reflect our knowledge of the way that the
world is changed by actions, and how it is updated accordingly. Because the number
of frame axioms grows proportionally to the product of possible actions over fluents
in a domain, theories of nonmonotonic reasoning have been developed to capture
the appropriateness of which properties should change, e.g. McCarthy’s theory of
circumscription, (1986) Reiter ’s default logic (1980), and Asher and Morreau’s non-
monotonic reasoning (1991).

The ramification problem examines the related problem of computing those fluents
that are impacted by the actions being performed. Rules defining these changes are
called effect axioms; the computational issues with ramifications involve the appropriate
pruning of inferences one can draw from an action. Schubert (1999) has approached the
problem as one of finding an adequate explanation of change.

7 conclu s i on

Given this account of temporal reasoning, we can see that the approaches we have
discussed (with the exception of the situation calculus) offer expressive frameworks that
can be applied to temporal reasoning in natural language. Both the McDermott and
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Allen contributions explicitly address problems of temporal inference in natural
language. The approaches explore reasoning with states, events, and point and interval
representations of time.

Clearly, mapping from natural language representations to such frameworks requires
an appropriate representation and annotation of events and the relations between them.
As will be seen in Part III, most of the events in discourse have no explicit temporal
anchoring and no explicit orderings relative to each other. Therefore, rules must be
developed that capture how the text or discourse structures event-orderings. Hobbs and
Pustejovsky (Chapter 14) show how an annotation scheme can be linked to a formal
theory of time intended for use in representing the temporal content of websites and
the properties of web services (the DAML Time Ontology). This linking allows inter-
pretations of documents in terms of the annotation scheme to be mapped to a temporal
representation where formal queries can be posed to a temporal reasoning system.
The more we can tie in annotation to temporal reasoning, the closer we will come to
solving some of the basic understanding problems for reasoning in language. This would
be a very important capability in automatic reasoning.
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