
1/123

Computational Models of Events
Lecture 3: Sub-atomic and Dynamic Models of Events

James Pustejovsky

Brandeis University

ESSLLI 2018 Summer School

Sofia, Bulgaria

August 6-10, 2018

Pustejovsky - Brandeis Computational Event Models

1/123

Today’s Outline

Kowalski and Sergot (1986): Event Calculus

Fernando: Segmented Event Logic

Moens and Steedman (1988), Pustejovsky (1991)

Pustejovsky and Moszkowicz (2011): Dynamic Interval
Temporal Logic

Naumann (1999): Dynamic Event Semantics

Pustejovsky - Brandeis Computational Event Models

2/123

Event Calculus
Lambalgen and Hamm (2005)

what distinguishes this approach to semantics: comparison
with standard model theoretic semantics

cognitive semantics as usually conceived

psycholinguistic approaches to semantics

event calculus: a fusion between these approaches

Pustejovsky - Brandeis Computational Event Models

3/123

Non-cognitive formal approaches to natural language
semantics

”I distinguish two topics: first, the description of possible
languages or grammars as abstract semantic systems whereby
symbols are associated with aspects of the world; and second, the
description of the psychological and sociological facts whereby a
particular one of these abstract semantic systems is the one used
by a person or a population. Only confusion comes of mixing these
two topics. . . . Semantics without truth conditions is not
semantics.” (David Lewis)

Pustejovsky - Brandeis Computational Event Models

4/123

Characteristic features

necessary and sufficient truth conditions (Lewis), possible
worlds semantics (Montague, Dowty, . . .),

semantic representations are sets in classical models
(D; R, . . . ; f , . . . ; a, . . .), or possible world structures, i.e.
families of such models related by an accessibility relation

models often viewed as ‘general metaphysics’, general
description of how the world is

‘sense relations’ modelled by entailment: deeper analysis of
lexicography

hence uses logical techniques

example: (branching) tense logic for modelling the future
tense

Pustejovsky - Brandeis Computational Event Models

5/123

Tense logic

modal logic with operators P (‘in the past’), F (‘in the
future’), H = ¬P¬ (‘always in the past’), G = ¬F¬ (‘always in
the future’)

interpreted on tense structure (T ,<,V), where < is at least
antisymmetric and transitive, and each proposition letter q is
interpreted as subset V (q) of T

for t ∈ T , (T ,<,V) ⊧ Pq[t] iff ∃s < t(s ∈ V (q)) and
(T ,<,V) ⊧ Fq[t] iff ∃s > t(s ∈ V (q))

axioms e.g. q → GPq, q → HFq (minimal tense logic);
PPq → Pq

unicity of the past: Pq → H(Pq ∨ q ∨ Fq) – still allows
branching future

tries to explain tenses purely temporally–but we have seen
that richer structure is involved

Pustejovsky - Brandeis Computational Event Models

6/123

Cognitively inspired approaches to semantics: ‘Languages
of the mind’

”Conceptual Semantics . . . is concerned most directly with the
form of the internal mental representations that constitute
conceptual structure and with the formal relations between this
level and other levels of representation. . . . Conceptual Semantics
is thus a prerequisite to [truth conditional] semantics: the first
thing one must know about an English sentence is its translation
into conceptual structure. Its truth conditions should then follow
from its conceptual structure plus rules of inference, which are
stated as well in terms of conceptual structure.” (Ray Jackendoff)

Pustejovsky - Brandeis Computational Event Models

7/123

Characteristic features

semantic representations are mental entities – what is their
‘most general’ theory?

criticism of traditional formal approaches to semantics
takes dim view of set theoretic models and truth conditions
prototypes
role of analogy/metaphor . . .

tries to anchor semantics in ‘conceptual structure’

‘componential analysis in terms of supposed primitives of
conceptual structure/language of the mind: EVENT, PATH,
STATE, GOAL, CAUSE ...
a. [S [NP John][VP ran [PP into [NP the room]]]]
b. [Event GO ([Thing JOHN],[Path TO ([Place IN ([Thing
ROOM])])])]

but why do cognitive linguists reject formal/logical methods?

Pustejovsky - Brandeis Computational Event Models

8/123

Psychologists’ views on semantics

emphasis on algorithms–e.g. ‘sets of possible worlds’
irrelevant because non-computable

e.g. meaning of an expression is algorithm which tests
whether object falls under the expression (Miller and
Johnson-Laird, Language and Perception)

psychologists’ aim is to understand issues like language
comprehension and production, in quantitative terms (e.g
reaction times, error rates)

psychologists are very fond of network architectures such as
spreading activation nets

compare Marr’s three levels of inquiry/division of labour
information processing task
algorithm
neural implementation

Pustejovsky - Brandeis Computational Event Models

9/123

Event calculus: a language for mental representations

human processing of temporal notions is in terms of
goals/plans/actions

this also requires a theory of causality and change, which
comes in two forms

instantaneous change
continuous change

Pustejovsky - Brandeis Computational Event Models

10/123

Event calculus, and what it talks about

actions and events: e, . . . (‘break’)

time–varying properties or fluents: f , . . . (‘being broken’),
possibly with parameters

individuals (‘John’)

instants of time, interpreted as real numbers

various other real quantities (e.g. position, velocity)

a goal is a desired state of affairs

a plan is a sequence of actions which achieves some goal

Pustejovsky - Brandeis Computational Event Models

11/123

Event calculus: primitive predicates . . .

predicates such as < over the reals

instantaneous change
1. Initially(f)
2. Happens(e, t)
3. Initiates(e, f , t)
4. Terminates(e, f , t)
5. Clipped(s, f , t)
6. HoldsAt(f , t)

continuous change
1. Releases(e, f , t)
2. Trajectory(f1, t, f2(x),d)

Pustejovsky - Brandeis Computational Event Models

12/123

Axioms for the event calculus, instantaneous change only

Axiom’
Initially(f) ∧ ¬Clipped(0, f , t) → HoldsAt(f , t)

Axiom’
Happens(e, t) ∧ Initiates(e, f , t) ∧ t < t

′

∧ ¬Clipped(t, f , t
′

)

→ HoldsAt(f , t
′

)

Axiom’
Happens(e, s) ∧ t < s < t

′

∧ Terminates(e, f , s) → Clipped(t, f , t
′

)

Pustejovsky - Brandeis Computational Event Models

13/123

Axioms for the event calculus, full version

Axiom
Initially(f) → HoldsAt(f ,0)

Axiom
HoldsAt(f , r) ∧ r < t ∧ ¬∃s < rHoldsAt(f , s) ∧ ¬Clipped(r , f , t) →
HoldsAt(f , t)

Axiom
Happens(e, t) ∧ Initiates(e, f , t) ∧ t < t

′

∧ ¬Clipped(t, f , t
′

)

→ HoldsAt(f , t
′

)

Axiom
Happens(e, t) ∧ Initiates(e, f1, t) ∧ t < t

′

∧ t
′

=

t + d ∧Trajectory(f1, t, f2,d) ∧ ¬Clipped(t, f1, t
′

) → HoldsAt(f2, t
′

)

Axiom
Happens(e, s) ∧ t < s <
t
′

∧ (Terminates(e, f , s) ∨ Releases(e, f , s)) → Clipped(t, f , t
′

)

Pustejovsky - Brandeis Computational Event Models

14/123

Typical models of the event calculus

left-open because fluent f does not hold at the moment it is
initiated

a version of Zeno’s paradox: there cannot be both a last
moment at which f does not hold and a first moment at
which f holds

best to assume last moment at which f does not hold

Pustejovsky - Brandeis Computational Event Models

15/123

Event calculus: states and scenarios

goal of the form ?HoldsAt(f , t) or ?Happens(e, t)

scenario describes cognitive representation of agent and
environment in language of event calculus

scenario must be theory of specific syntactic form to be
plausible as memory structure

syntactic form of scenario defined in two steps

Definition
A state S(t) at time t is a conjunction of literals involving only

1. literals of the form (¬)HoldsAt(f , t), for t fixed and possibly
different f ,

2. equalities between fluent terms, and between event terms

3. equations and inequalities involving real numbers

Pustejovsky - Brandeis Computational Event Models

16/123

Scenario

Definition
A scenario is a conjunction of statements of the form

1. Initially(f),

2. ∀t(S(t) → Initiates(e, f , t)),

3. ∀t(S(t) → Terminates(e, f , t)),

4. ∀t(S(t) → Releases(e, f , t)),

5. ∀t, s(S(t, s) ∧Happens(e0, s) → Happens(e, t)),

6. S(f1, f2, t,d) → Trajectory(f1, t, f2,d),

where the S(t), . . . are states in the sense of definition 1.

Pustejovsky - Brandeis Computational Event Models

17/123

Causation and continuous change

axioms for instantaneous change formalize principle of inertia:
after the cause has stopped acting, the caused state does not
change

this principle is not valid for continuous causation

Releases(e, f , t) stipulates that when e happens, f is no
longer subject to the principle of inertia

example: crossing the street
HoldsAt(distance(x), t) →
Trajectory(crossing,t,distance(x + d),d)

Pustejovsky - Brandeis Computational Event Models

18/123

Lexical entry for the accomplishment ‘cross the street’

1. Happens(start,t0)

2. HoldsAt(crossing, now)

3. Initially(one–side)

4. Initially(distance(0))

5. HoldsAt(distance(m), t) ∧ HoldsAt(crossing, t)→
Happens(reach, t)

6. Initiates(start, crossing, t)

7. Releases(start, distance(0), t)

8. Initiates(reach, other–side, t)

9. Terminates(reach, crossing, t)

10. HoldsAt(distance(x), t)
→Trajectory(crossing,t,distance(x + d),d)

11. HoldsAt(distance(x1),t) ∧ HoldsAt(distance(x2), t) →
x1 = x2.

Pustejovsky - Brandeis Computational Event Models

19/123

Plans contained in a lexical entry

consider the goal ?HoldsAt(other–side,t), t ≥ now

want to derive plan for achievement of this goal

do this by backward chaining using axioms of the event
calculus and the scenario

e.g. by axiom 3 reach event must have occurred,

by scenario 5 this can only be if distance m has been covered

by axiom 4 this distance can be covered only if the activity
crossing persists for sufficiently long, etc.

compare this semantic representation with set theoretic
representation, such as

{(a,b) ∣ cross(a,b)}, s= ‘the street’

Pustejovsky - Brandeis Computational Event Models

20/123

Vendler Event Classes + Semelfactive

state: John loves his mother.

activity: Mary played in the park for an hour.

accomplishment: Mary wrote a novel.

achievement: John found a Euro on the floor.

point: John knocked on the door (for 2 minutes).

Pustejovsky - Brandeis Computational Event Models

20/123

Vendler Event Classes + Semelfactive

state: John loves his mother.

activity: Mary played in the park for an hour.

accomplishment: Mary wrote a novel.

achievement: John found a Euro on the floor.

point: John knocked on the door (for 2 minutes).

Pustejovsky - Brandeis Computational Event Models

20/123

Vendler Event Classes + Semelfactive

state: John loves his mother.

activity: Mary played in the park for an hour.

accomplishment: Mary wrote a novel.

achievement: John found a Euro on the floor.

point: John knocked on the door (for 2 minutes).

Pustejovsky - Brandeis Computational Event Models

20/123

Vendler Event Classes + Semelfactive

state: John loves his mother.

activity: Mary played in the park for an hour.

accomplishment: Mary wrote a novel.

achievement: John found a Euro on the floor.

point: John knocked on the door (for 2 minutes).

Pustejovsky - Brandeis Computational Event Models

20/123

Vendler Event Classes + Semelfactive

state: John loves his mother.

activity: Mary played in the park for an hour.

accomplishment: Mary wrote a novel.

achievement: John found a Euro on the floor.

point: John knocked on the door (for 2 minutes).

Pustejovsky - Brandeis Computational Event Models

21/123

Fernando’s Segmented Event Theory
Fernando (2008, 2013)

Timelines interpreting interval temporal logic formulas are
segmented into strings which serve as semantic
representations for tense and aspect.

The strings have bounded but refinable granularity, suitable
for analyzing (im)perfectivity, durativity, telicity, and various
relations including branching.

Pustejovsky - Brandeis Computational Event Models

22/123

Fernando’s Segmented Event Theory

Pustejovsky - Brandeis Computational Event Models

23/123

Fernando’s Segmented Event Theory

Pustejovsky - Brandeis Computational Event Models

24/123

Fernando’s Segmented Event Theory

Pustejovsky - Brandeis Computational Event Models

25/123

Fernando’s Segmented Event Theory

Pustejovsky - Brandeis Computational Event Models

26/123

Fernando’s Segmented Event Theory

Pustejovsky - Brandeis Computational Event Models

27/123

Fernando’s Segmented Event Theory

Pustejovsky - Brandeis Computational Event Models

28/123

Bach Eventuality Typology (Bach, 1986)

Pustejovsky - Brandeis Computational Event Models

29/123

Event Transition Graph (Moens and Steedman 1988)

Pustejovsky - Brandeis Computational Event Models

30/123

Incremental Theme Verbs

Certain NP’s measure out the event. They are direct objects
consumed or created in increments over time (cf. eat an apple
vs. push a chart) (Tenny 1994).

In Mary drank a glass of wine “every part of the glass of wine
being drunk corresponds to a part of the drinking event”
(Krifka 1992)

“Incremental themes are arguments that are completely
processed only upon termination of the event, i.e., at its end
point” (Dowty 1991).

Pustejovsky - Brandeis Computational Event Models

30/123

Incremental Theme Verbs

Certain NP’s measure out the event. They are direct objects
consumed or created in increments over time (cf. eat an apple
vs. push a chart) (Tenny 1994).

In Mary drank a glass of wine “every part of the glass of wine
being drunk corresponds to a part of the drinking event”
(Krifka 1992)

“Incremental themes are arguments that are completely
processed only upon termination of the event, i.e., at its end
point” (Dowty 1991).

Pustejovsky - Brandeis Computational Event Models

30/123

Incremental Theme Verbs

Certain NP’s measure out the event. They are direct objects
consumed or created in increments over time (cf. eat an apple
vs. push a chart) (Tenny 1994).

In Mary drank a glass of wine “every part of the glass of wine
being drunk corresponds to a part of the drinking event”
(Krifka 1992)

“Incremental themes are arguments that are completely
processed only upon termination of the event, i.e., at its end
point” (Dowty 1991).

Pustejovsky - Brandeis Computational Event Models

31/123

Degree Achievements

Verbs with variable aspectual behavior: they seems to be
change of state verbs like other achievements , but allow
durational adverbs (Dowty 1979, Hay, Kennedy and Levin
1999, Rappaport Hovav 2008).

No implication that exactly the same change of state took
place over and over again (no semelfactives).

Scalar predicates: verbs which lexically specify a change along
a scale inasmuch as they denote an ordered set of values for a
property of an event argument (Hay, Kennedy and Levin 1999,
Rappaport Hovav 2008).

For example cool, age, lenghten, shorten; descend.

Let the soup cool for 10 minutes.

I went on working until the soup cooled.

Pustejovsky - Brandeis Computational Event Models

31/123

Degree Achievements

Verbs with variable aspectual behavior: they seems to be
change of state verbs like other achievements , but allow
durational adverbs (Dowty 1979, Hay, Kennedy and Levin
1999, Rappaport Hovav 2008).

No implication that exactly the same change of state took
place over and over again (no semelfactives).

Scalar predicates: verbs which lexically specify a change along
a scale inasmuch as they denote an ordered set of values for a
property of an event argument (Hay, Kennedy and Levin 1999,
Rappaport Hovav 2008).

For example cool, age, lenghten, shorten; descend.

Let the soup cool for 10 minutes.

I went on working until the soup cooled.

Pustejovsky - Brandeis Computational Event Models

31/123

Degree Achievements

Verbs with variable aspectual behavior: they seems to be
change of state verbs like other achievements , but allow
durational adverbs (Dowty 1979, Hay, Kennedy and Levin
1999, Rappaport Hovav 2008).

No implication that exactly the same change of state took
place over and over again (no semelfactives).

Scalar predicates: verbs which lexically specify a change along
a scale inasmuch as they denote an ordered set of values for a
property of an event argument (Hay, Kennedy and Levin 1999,
Rappaport Hovav 2008).

For example cool, age, lenghten, shorten; descend.

Let the soup cool for 10 minutes.

I went on working until the soup cooled.

Pustejovsky - Brandeis Computational Event Models

31/123

Degree Achievements

Verbs with variable aspectual behavior: they seems to be
change of state verbs like other achievements , but allow
durational adverbs (Dowty 1979, Hay, Kennedy and Levin
1999, Rappaport Hovav 2008).

No implication that exactly the same change of state took
place over and over again (no semelfactives).

Scalar predicates: verbs which lexically specify a change along
a scale inasmuch as they denote an ordered set of values for a
property of an event argument (Hay, Kennedy and Levin 1999,
Rappaport Hovav 2008).

For example cool, age, lenghten, shorten; descend.

Let the soup cool for 10 minutes.

I went on working until the soup cooled.

Pustejovsky - Brandeis Computational Event Models

32/123

Points

Moens and Steedman 1988 analyze point expressions as those
that are not normally associated to a consequent state
(consequent state defined as no transition to a new state in
the world – according to Moens and Steedman a point is an
event whose consequences are not at issue in the discourse).

Semelfactives (Smith 1990, Rothstein 2004).

*arrived/landed for five minutes, knocked/tapped for five
minutes.

Points admit iterative readings under coercive contexts
(Moens and Steedman 1988).

Pustejovsky - Brandeis Computational Event Models

32/123

Points

Moens and Steedman 1988 analyze point expressions as those
that are not normally associated to a consequent state
(consequent state defined as no transition to a new state in
the world – according to Moens and Steedman a point is an
event whose consequences are not at issue in the discourse).

Semelfactives (Smith 1990, Rothstein 2004).

*arrived/landed for five minutes, knocked/tapped for five
minutes.

Points admit iterative readings under coercive contexts
(Moens and Steedman 1988).

Pustejovsky - Brandeis Computational Event Models

32/123

Points

Moens and Steedman 1988 analyze point expressions as those
that are not normally associated to a consequent state
(consequent state defined as no transition to a new state in
the world – according to Moens and Steedman a point is an
event whose consequences are not at issue in the discourse).

Semelfactives (Smith 1990, Rothstein 2004).

*arrived/landed for five minutes, knocked/tapped for five
minutes.

Points admit iterative readings under coercive contexts
(Moens and Steedman 1988).

Pustejovsky - Brandeis Computational Event Models

32/123

Points

Moens and Steedman 1988 analyze point expressions as those
that are not normally associated to a consequent state
(consequent state defined as no transition to a new state in
the world – according to Moens and Steedman a point is an
event whose consequences are not at issue in the discourse).

Semelfactives (Smith 1990, Rothstein 2004).

*arrived/landed for five minutes, knocked/tapped for five
minutes.

Points admit iterative readings under coercive contexts
(Moens and Steedman 1988).

Pustejovsky - Brandeis Computational Event Models

33/123

Aspectual Composition

Bare plurals and mass-terms arguments can make a sentence
with a telic predicate behave as if it were ’durative’ or
’imperfective’ in aspect (Verkuyl 1972).

John drank a glass of beer (perfective).

John drank beer (imperfective).

Pustejovsky - Brandeis Computational Event Models

33/123

Aspectual Composition

Bare plurals and mass-terms arguments can make a sentence
with a telic predicate behave as if it were ’durative’ or
’imperfective’ in aspect (Verkuyl 1972).

John drank a glass of beer (perfective).

John drank beer (imperfective).

Pustejovsky - Brandeis Computational Event Models

33/123

Aspectual Composition

Bare plurals and mass-terms arguments can make a sentence
with a telic predicate behave as if it were ’durative’ or
’imperfective’ in aspect (Verkuyl 1972).

John drank a glass of beer (perfective).

John drank beer (imperfective).

Pustejovsky - Brandeis Computational Event Models

33/123

Aspectual Composition

Bare plurals and mass-terms arguments can make a sentence
with a telic predicate behave as if it were ’durative’ or
’imperfective’ in aspect (Verkuyl 1972).

John drank a glass of beer (perfective).

John drank beer (imperfective).

Pustejovsky - Brandeis Computational Event Models

34/123

Aspectual Coercion

“A person leads somebody somewhere” (PROCESS) vs. “A
road leads somewhere” (STATE)

“An object falls to the ground” (TRANSITION) vs. “A case
falls into a certain category” (STATE)

Pustejovsky - Brandeis Computational Event Models

34/123

Aspectual Coercion

“A person leads somebody somewhere” (PROCESS) vs. “A
road leads somewhere” (STATE)

“An object falls to the ground” (TRANSITION) vs. “A case
falls into a certain category” (STATE)

Pustejovsky - Brandeis Computational Event Models

35/123

Subatomic Event Structure
Pustejovsky (1991)

(1) a. event → state ∣ process ∣ transition

b. state: → e
c. process: → e1 . . . en
d. transitionach: → state state
e. transitionacc : → process state

Pustejovsky - Brandeis Computational Event Models

35/123

Subatomic Event Structure
Pustejovsky (1991)

(2) a. event → state ∣ process ∣ transition
b. state: → e

c. process: → e1 . . . en
d. transitionach: → state state
e. transitionacc : → process state

Pustejovsky - Brandeis Computational Event Models

35/123

Subatomic Event Structure
Pustejovsky (1991)

(3) a. event → state ∣ process ∣ transition
b. state: → e
c. process: → e1 . . . en

d. transitionach: → state state
e. transitionacc : → process state

Pustejovsky - Brandeis Computational Event Models

35/123

Subatomic Event Structure
Pustejovsky (1991)

(4) a. event → state ∣ process ∣ transition
b. state: → e
c. process: → e1 . . . en
d. transitionach: → state state

e. transitionacc : → process state

Pustejovsky - Brandeis Computational Event Models

35/123

Subatomic Event Structure
Pustejovsky (1991)

(5) a. event → state ∣ process ∣ transition
b. state: → e
c. process: → e1 . . . en
d. transitionach: → state state
e. transitionacc : → process state

Pustejovsky - Brandeis Computational Event Models

36/123

Qualia Structure for Causative
Pustejovsky (1995)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kill

eventstr =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 = e1:process
e2 = e2:state
Restr = <∝
Head = e1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

argstr =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

arg1 = 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ind
formal = physobj

⎤
⎥
⎥
⎥
⎥
⎥
⎦

arg2 = 2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

animate ind
formal = physobj

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

qualia =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cause-lcp
formal = dead(e2, 2)
agentive = kill act(e1, 1 , 2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Pustejovsky - Brandeis Computational Event Models

37/123

Opposition Structure
Pustejovsky (2000)

(6) kill
e

<

e2

dead(y)

e∗1

kill act(x , y)

¬dead(y)

(7) break
e

<

e2

broken(y)

e1

break act(x , y)

¬broken(y)
Pustejovsky - Brandeis Computational Event Models

38/123

Qualia Structure with Opposition Structure

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kill

eventstr =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e0 = e0:state
e1 = e1:process
e2 = e2:state
Restr = <∝
Head = e1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

argstr =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

arg1 = 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ind
formal = physobj

⎤
⎥
⎥
⎥
⎥
⎥
⎦

arg2 = 2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

animate ind
formal = physobj

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

qualia =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cause-lcp
formal = dead(e2, 2)
agentive = kill act(e1, 1 , 2)
precond = ¬dead(e0, 2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Pustejovsky - Brandeis Computational Event Models

39/123

Opposition is Part of Event Structure

e

<

e1
kill act(x , y)

e2

¬dead(w)

P̄

dead(w)
P

OSe
<

ē1
○

e1

kill act(x , y)

e3

¬dead(y)

e2

dead(y)

Pustejovsky - Brandeis Computational Event Models

40/123

Dynamic Extensions to GL

Qualia Structure: Can be interpreted dynamically

Dynamic Selection: Encodes the way an argument participates
in the event

Tracking change: Models the dynamics of participant
attributes

Pustejovsky - Brandeis Computational Event Models

40/123

Dynamic Extensions to GL

Qualia Structure: Can be interpreted dynamically

Dynamic Selection: Encodes the way an argument participates
in the event

Tracking change: Models the dynamics of participant
attributes

Pustejovsky - Brandeis Computational Event Models

40/123

Dynamic Extensions to GL

Qualia Structure: Can be interpreted dynamically

Dynamic Selection: Encodes the way an argument participates
in the event

Tracking change: Models the dynamics of participant
attributes

Pustejovsky - Brandeis Computational Event Models

41/123

Inherent Dynamic Aspect of Qualia Structure

Parameters of a verb, P, extend over sequential frames of
interpretation (subevents).

P is decomposed into different subpredicates within these
events:

Verb(Arg1Arg2) Ô⇒ λyλx P1(x , y)
A

P2(y)
F

Pustejovsky - Brandeis Computational Event Models

41/123

Inherent Dynamic Aspect of Qualia Structure

Parameters of a verb, P, extend over sequential frames of
interpretation (subevents).

P is decomposed into different subpredicates within these
events:

Verb(Arg1Arg2) Ô⇒ λyλx P1(x , y)
A

P2(y)
F

Pustejovsky - Brandeis Computational Event Models

41/123

Inherent Dynamic Aspect of Qualia Structure

Parameters of a verb, P, extend over sequential frames of
interpretation (subevents).

P is decomposed into different subpredicates within these
events:

Verb(Arg1Arg2) Ô⇒ λyλx P1(x , y)
A

P2(y)
F

Pustejovsky - Brandeis Computational Event Models

42/123

Frame-based Event Structure

Φ ¬Φ

Φ

Φ/p Φ/¬p Φ/p Φ/¬p
+

State (S)

Derived
Transition

Transition (T)

Process (P)

Φ/p Φ/¬p Φ/p Φ/¬p
+

Φ
P(x)

¬Φ
¬P(x)

2nd Conference on CTF, Pustejovsky (2009)

Pustejovsky - Brandeis Computational Event Models

43/123

Dynamic Event Structure

Events are built up from multiple (stacked) layers of primitive
constraints on the individual participants.

There may be many changes taking place within one atomic
event, when viewed at the subatomic level.

Pustejovsky - Brandeis Computational Event Models

43/123

Dynamic Event Structure

Events are built up from multiple (stacked) layers of primitive
constraints on the individual participants.

There may be many changes taking place within one atomic
event, when viewed at the subatomic level.

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:

1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);

2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);

3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);

4. They can be turned into formulas
[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

44/123

Dynamic Interval Temporal Logic

(Pustejovsky and Moszkowicz, 2011)

Formulas: φ propositions. Evaluated in a state, s.

Programs: α, functions from states to states, s × s. Evaluated
over a pair of states, (s, s ′).

Temporal Operators: ◯φ, 3φ, 2φ, φ Uψ.

Program composition:
1. They can be ordered, α;β (α is followed by β);
2. They can be iterated, a∗ (apply a zero or more times);
3. They can be disjoined, α ∪ β (apply either α or β);
4. They can be turned into formulas

[α]φ (after every execution of α, φ is true);
⟨α⟩φ (there is an execution of α, such that φ is true);

5. Formulas can become programs, φ? (test to see if φ is true,
and proceed if so).

Pustejovsky - Brandeis Computational Event Models

45/123

Dynamic Event Structure

(8) a. Mary was sick today.
b. My phone was expensive.
c. Sam lives in Boston.

We assume that a state is defined as a single frame structure
(event), containing a proposition, where the frame is temporally
indexed, i.e., e i → φ is interpreted as φ holding as true at time i .
The frame-based representation from Pustejovsky and Moszkowicz
(2011) can be given as follows:

Pustejovsky - Brandeis Computational Event Models

45/123

Dynamic Event Structure

(9) a. Mary was sick today.
b. My phone was expensive.
c. Sam lives in Boston.

We assume that a state is defined as a single frame structure
(event), containing a proposition, where the frame is temporally
indexed, i.e., e i → φ is interpreted as φ holding as true at time i .
The frame-based representation from Pustejovsky and Moszkowicz
(2011) can be given as follows:

Pustejovsky - Brandeis Computational Event Models

46/123

Dynamic Event Structure

(10) φ
i

e

Propositions can be evaluated over subsequent states, of course, so
we need an operation of concatenation, +, which applies to two or
more event frames, as illustrated below.

(11) φ
i

e
+ φ

j

e
= φ

[i ,j]

e

Semantic interpretations for these are:

(12) a. [[φ]]M,i = 1 iff VM,i(φ) = 1.

b. [[φ φ]]M,⟨i ,j⟩ = 1 iff VM,(φ) = 1 and VM,j(φ) = 1,
where i < j .

Pustejovsky - Brandeis Computational Event Models

46/123

Dynamic Event Structure

(13) φ
i

e

Propositions can be evaluated over subsequent states, of course, so
we need an operation of concatenation, +, which applies to two or
more event frames, as illustrated below.

(14) φ
i

e
+ φ

j

e
= φ

[i ,j]

e

Semantic interpretations for these are:

(15) a. [[φ]]M,i = 1 iff VM,i(φ) = 1.

b. [[φ φ]]M,⟨i ,j⟩ = 1 iff VM,(φ) = 1 and VM,j(φ) = 1,
where i < j .

Pustejovsky - Brandeis Computational Event Models

46/123

Dynamic Event Structure

(16) φ
i

e

Propositions can be evaluated over subsequent states, of course, so
we need an operation of concatenation, +, which applies to two or
more event frames, as illustrated below.

(17) φ
i

e
+ φ

j

e
= φ

[i ,j]

e

Semantic interpretations for these are:

(18) a. [[φ]]M,i = 1 iff VM,i(φ) = 1.

b. [[φ φ]]M,⟨i ,j⟩ = 1 iff VM,(φ) = 1 and VM,j(φ) = 1,
where i < j .

Pustejovsky - Brandeis Computational Event Models

46/123

Dynamic Event Structure

(19) φ
i

e

Propositions can be evaluated over subsequent states, of course, so
we need an operation of concatenation, +, which applies to two or
more event frames, as illustrated below.

(20) φ
i

e
+ φ

j

e
= φ

[i ,j]

e

Semantic interpretations for these are:

(21) a. [[φ]]M,i = 1 iff VM,i(φ) = 1.

b. [[φ φ]]M,⟨i ,j⟩ = 1 iff VM,(φ) = 1 and VM,j(φ) = 1,
where i < j .

Pustejovsky - Brandeis Computational Event Models

46/123

Dynamic Event Structure

(22) φ
i

e

Propositions can be evaluated over subsequent states, of course, so
we need an operation of concatenation, +, which applies to two or
more event frames, as illustrated below.

(23) φ
i

e
+ φ

j

e
= φ

[i ,j]

e

Semantic interpretations for these are:

(24) a. [[φ]]M,i = 1 iff VM,i(φ) = 1.

b. [[φ φ]]M,⟨i ,j⟩ = 1 iff VM,(φ) = 1 and VM,j(φ) = 1,
where i < j .

Pustejovsky - Brandeis Computational Event Models

47/123

Dynamic Event Structure

(25) e i

φ

Tree structure for event concatenation:

e i

φ

+

e j

φ

=

e[i ,j]

φ

Pustejovsky - Brandeis Computational Event Models

47/123

Dynamic Event Structure

(26) e i

φ

Tree structure for event concatenation:

e i

φ

+

e j

φ

=

e[i ,j]

φ

Pustejovsky - Brandeis Computational Event Models

48/123

Labeled Transition System (LTS)

The dynamics of actions can be modeled as a Labeled Transition
Systems (LTS).

An LTS consists of a 3-tuple, ⟨S ,Act,→⟩, where

(27) a. S is the set of states;
b. Act is a set of actions;
c. → is a total transition relation: →⊆ S ×Act × S .

(28) (e1, α, e2) ∈→

cf. Fernando (2001, 2013)

Pustejovsky - Brandeis Computational Event Models

48/123

Labeled Transition System (LTS)

The dynamics of actions can be modeled as a Labeled Transition
Systems (LTS).

An LTS consists of a 3-tuple, ⟨S ,Act,→⟩, where

(29) a. S is the set of states;
b. Act is a set of actions;
c. → is a total transition relation: →⊆ S ×Act × S .

(30) (e1, α, e2) ∈→

cf. Fernando (2001, 2013)

Pustejovsky - Brandeis Computational Event Models

48/123

Labeled Transition System (LTS)

The dynamics of actions can be modeled as a Labeled Transition
Systems (LTS).

An LTS consists of a 3-tuple, ⟨S ,Act,→⟩, where

(31) a. S is the set of states;
b. Act is a set of actions;
c. → is a total transition relation: →⊆ S ×Act × S .

(32) (e1, α, e2) ∈→

cf. Fernando (2001, 2013)

Pustejovsky - Brandeis Computational Event Models

48/123

Labeled Transition System (LTS)

The dynamics of actions can be modeled as a Labeled Transition
Systems (LTS).

An LTS consists of a 3-tuple, ⟨S ,Act,→⟩, where

(33) a. S is the set of states;
b. Act is a set of actions;
c. → is a total transition relation: →⊆ S ×Act × S .

(34) (e1, α, e2) ∈→

cf. Fernando (2001, 2013)

Pustejovsky - Brandeis Computational Event Models

49/123

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit
what brings about a state-to-state transition.

As a shorthand for

(35) a. (e1, α, e2) ∈→, we will also use:

b. e1
α
Ð→ e3

S1 S2

p ¬p
A

Pustejovsky - Brandeis Computational Event Models

49/123

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit
what brings about a state-to-state transition.

As a shorthand for

(36) a. (e1, α, e2) ∈→, we will also use:

b. e1
α
Ð→ e3

S1 S2

p ¬p
A

Pustejovsky - Brandeis Computational Event Models

49/123

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit
what brings about a state-to-state transition.

As a shorthand for

(37) a. (e1, α, e2) ∈→, we will also use:

b. e1
α
Ð→ e3

S1 S2

p ¬p
A

Pustejovsky - Brandeis Computational Event Models

49/123

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit
what brings about a state-to-state transition.

As a shorthand for

(38) a. (e1, α, e2) ∈→, we will also use:

b. e1
α
Ð→ e3

S1 S2

p ¬p
A

Pustejovsky - Brandeis Computational Event Models

49/123

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit
what brings about a state-to-state transition.

As a shorthand for

(39) a. (e1, α, e2) ∈→, we will also use:

b. e1
α
Ð→ e3

S1 S2

p ¬p
A

Pustejovsky - Brandeis Computational Event Models

50/123

Labeled Transition System (LTS)

If reference to the state content (rather than state name) is
required for interpretation purposes, then as shorthand for:
({φ}e1 , α,{¬φ}e2) ∈→, we use:

(40) φ
e1

α
Ð→ ¬φ

e2

S1 S2

p ¬p
A

Pustejovsky - Brandeis Computational Event Models

50/123

Labeled Transition System (LTS)

If reference to the state content (rather than state name) is
required for interpretation purposes, then as shorthand for:
({φ}e1 , α,{¬φ}e2) ∈→, we use:

(41) φ
e1

α
Ð→ ¬φ

e2

S1 S2

p ¬p
A

Pustejovsky - Brandeis Computational Event Models

51/123

Temporal Labeled Transition System (TLTS)

With temporal indexing from a Linear Temporal Logic, we can
define a Temporal Labeled Transition System (TLTS). For a state,
e1, indexed at time i , we say e1@i .
({φ}e1@i , α,{¬φ}e2@i+1) ∈→(i ,i+1), we use:

(42) φ
i

e1

α
Ð→ ¬φ

i+1

e2

Pustejovsky - Brandeis Computational Event Models

51/123

Temporal Labeled Transition System (TLTS)

With temporal indexing from a Linear Temporal Logic, we can
define a Temporal Labeled Transition System (TLTS). For a state,
e1, indexed at time i , we say e1@i .
({φ}e1@i , α,{¬φ}e2@i+1) ∈→(i ,i+1), we use:

(43) φ
i

e1

α
Ð→ ¬φ

i+1

e2

Pustejovsky - Brandeis Computational Event Models

52/123

Dynamic Event Structure

(44) e[i,i+1]

e i1
α

e i+12

φ ¬φ

Pustejovsky - Brandeis Computational Event Models

53/123

Dynamic Event Structure

(45) Mary awoke from a long sleep.

The state of being asleep has a duration, [i , j], who’s valuation is
gated by the waking event at the “next state”, j + 1.

(46) e[i,j+1]

e[i,j]1

α
e j+12

φ ¬φ

Pustejovsky - Brandeis Computational Event Models

53/123

Dynamic Event Structure

(47) Mary awoke from a long sleep.

The state of being asleep has a duration, [i , j], who’s valuation is
gated by the waking event at the “next state”, j + 1.

(48) e[i,j+1]

e[i,j]1

α
e j+12

φ ¬φ

Pustejovsky - Brandeis Computational Event Models

53/123

Dynamic Event Structure

(49) Mary awoke from a long sleep.

The state of being asleep has a duration, [i , j], who’s valuation is
gated by the waking event at the “next state”, j + 1.

(50) e[i,j+1]

e[i,j]1

α
e j+12

φ ¬φ

Pustejovsky - Brandeis Computational Event Models

54/123

Simple First-order Transition

(51) x ∶= y (ν-transition)
“x assumes the value given to y in the next state.”
⟨M, (i , i + 1), (u,u[x/u(y)])⟩ ⊧ x ∶= y
iff ⟨M, i ,u⟩ ⊧ s1 ∧ ⟨M, i + 1,u[x/u(y)]⟩ ⊧ x = y

(52) e[i,i+1]

e i1
x ∶= y

e i+12

A(z) = x A(z) = y

Pustejovsky - Brandeis Computational Event Models

54/123

Simple First-order Transition

(53) x ∶= y (ν-transition)
“x assumes the value given to y in the next state.”
⟨M, (i , i + 1), (u,u[x/u(y)])⟩ ⊧ x ∶= y
iff ⟨M, i ,u⟩ ⊧ s1 ∧ ⟨M, i + 1,u[x/u(y)]⟩ ⊧ x = y

(54) e[i,i+1]

e i1
x ∶= y

e i+12

A(z) = x A(z) = y

Pustejovsky - Brandeis Computational Event Models

55/123

Processes

With a ν-transition defined, a process can be viewed as simply an
iteration of basic variable assignments and re-assignments:

(55)
e

e1
ν e2 . . . ν en

Pustejovsky - Brandeis Computational Event Models

55/123

Processes

With a ν-transition defined, a process can be viewed as simply an
iteration of basic variable assignments and re-assignments:

(56)
e

e1
ν e2 . . . ν en

Pustejovsky - Brandeis Computational Event Models

