Computational Models of Events

Lecture 2: Atomic Theories of Events

James Pustejovsky
Brandeis University

ESSLLI 2018 Summer School
Sofia, Bulgaria
August 6-10, 2018

Pustejovsky - Brandeis Computational Event Models

Basic Aspectual Properties

- Durativity: Does the event last for some time (e.g., Mike
built the house) or is it instantaneous (e.g., Mike exploded
the balloon)?

- Boundedness: Does the event come to an end (e.g., Mike
built the house/ Mike built the house for two years) or does it
last indefinitely within the relevant time period (Mike was
building the house/ Mike is in Boston)?

- Dynamicity: Does the event involve some kind of change or
not? Stative events do not involve change, e.g., know, love,
be tall, be sick. Dynamic events, on the other hand, are
perceived and described as changing in time: e.g., John
{ran/was running} (John's location in time changes), John is
working, etc.

Pustejovsky - Brandeis Computational Event Models

Basic Aspectual Properties

- Telicity: Does the event reach a natural culmination? Events
that involve change may have a built-in endpoint (their telos)
or not. For instance, the event denoted by John read does not
have a natural result (i.e., is atelic), but that denoted by John
read the book does (i.e., when the book has been read
through) and it is therefore telic.

- lteration: |s the event composed of several distinct events
(e.g., The ball bounced along the road or Mike visited his
parents every Sunday) or just one single event (e.g., The baby
sneezed once)?

- Intensity: What degree of force does the event have? For
instance, if we compare He burned himself and The building
burned down, the latter expresses a higher intensity event: the
building was completely destroyed by burning.

Pustejovsky - Brandeis Computational Event Models

Grammatical Aspect

(1) a. PERFECTIVE: Mike built the house.
b. IMPERFECTIVE: Mike was building the house

(2) a. PERFECTIVE: vybrosit’" ‘throw away’
IMPERFECTIVE: vybras-yva-t’' ‘be in the process of
throwing away repeatedly or habitually’

b. PERFECTIVE: dat’” ‘give’

IMPERFECTIVE: da-va-t’ ' ‘be giving, give repeatedly or
habitually’

Pustejovsky - Brandeis Computational Event Models

Grammatical Aspect

The Spanish past imperfect inflection (the -aba ending of
‘trabajaba’ encodes both the past tense and the imperfective
aspect, and the simple past perfect inflection (the -6 ending of
‘trabajé’ in (3b)) amalgamates past tense and perfective aspect.

(3) a. Juan trabaj-a-ba en el campo.
‘Juan was working the land.’

b. Juan trabaj-6 en el campo.
‘Juan worked the land.’

Pustejovsky - Brandeis Computational Event Models

The Davidson Event Argument

Events are concrete entities, which can be perceived, located in
space and time and, moreover, that they are linguistically real. In
(4b), for example, both instances of the pronoun it refer to the
event ‘Brutus stabbed Caesar’, while the verb witness selects this
event as one of its complements. In (4a), the PPs ‘in the back’, ‘in
the Forum’ and ‘with a knife' can be seen as modifying this event.

(4) a. He stabbed Caesar in the back, in the Forum, with a
knife.

b. Brutus did it and everyone witnessed it.

Pustejovsky - Brandeis Computational Event Models

a. John feeds Fido.
b. [s [pp John] [vp [v feeds |[pp Fido]]]

(6) a. A boy feeds Fido.
b. [s [A [np [n boyl]] [ve [v feeds | [pp Fido]]]

a. feed(argi, argz)

b. APPLY feed(argi, argy) to ‘Fido' = feed(args, Fido)
c. APPLY feed(arg;, Fido) to ‘John’ = feed(John, Fido)
c

. APPLY feed(argy, Fido) to ‘a_boy’ = feed(a_boy, Fido)

Pustejovsky - Brandeis Computational Event Models

Function Application

(8) FUNCTION APPLICATION:
a. INFORMAL: A predicate (is an unsaturated expression,
which, when combined with its argument, o, becomes a
saturated expression, f(«);
b. FORMAL: If the argument « is of type a, and the function
B is of type a — b (i.e., if S maps expressions of type a into
expressions of type b), then 5(«) is of type b.

Pustejovsky - Brandeis Computational Event Models

Function Application

(9) a. John feeds Fido.
feed(j, f)
b. A boy feeds Fido.
Ix[boy(x) A feed(x, f)]

(10) a. PREDICATE-ARGUMENT NOTATION: feed(arg;,arg,)
b. A-NOTATION: AyAx[feed(x,y)]

(11) a. Mary sleeps.
b. sleep(m)

Pustejovsky - Brandeis Computational Event Models

Function Application

(12) a. Mary, m:e
b. sleep, Ax[sleep(x)]:e—t
c. APPLY Ax[sleep(x)](m) = sleep(m): t

(13)
S:t
feed(j, f)
/\
DP VP:e—t
‘ Ax[feed(x,)]
/\
John \"/ DP
e |
feed Fido
e—~(e—t) f:e

Ay x| feed(x,y)]

Pustejovsky - Brandeis Computational Event Models

Translations

SYNTACTIC TYPE SEMANTIC TYPE SEMANTIC EXPRESSION

Proper Name e individuals (Mary)

Sentence t propositions

Intransitive Verb | e—t Ax[Verb'(x)]

Transitive Verb e—~(e—t) Ay x[Verb'(x,y)]

Noun e—t Ax[Noun’(x)]

Adjective e—t Ax[Ad] (x)]

DP (referential) e individuals (my oldest daughter, the sun)
VP e—t Ax[VP'(x)]

Table: Syntactic Categories and their Semantic Types (Part A)

Pustejovsky - Brandeis Computational Event Models

(14) a. A woman sleeps.
b. Ix[woman(x) A sleep(x)]
(15)

e—t e—~t
—

[[Awoman]pp[sleeps]vp]s

(16) a. [[a]]l = APAQIxX[P(x) A Q(x)]

b. [[every]] = APAQVX[P(x) —» Q(x)]

Pustejovsky - Brandeis Computational Event Models

S:t
Ix[boy(x) A feed(x, f)]
/\

DP:(e—t) >t VP:e—t
AQ3x[boy(x) A Q(x)] Ax[feed(x,)]
/\ /\
Det NP \/ DP
a N feed Fido
(e—t)—>((e~t) —t) ‘ e~ (e—t) f:e
APAQIX[P(x) A Q(x)] Ay x| feed(x,y)]
boy
e—>t
Ay[boy(y)]

Pustejovsky - Brandeis Computational Event Models

Event Argument

Table 1.1: Approaches to verbal denotations

truerule Position Verbal denotation Example: Brutus stabbed Caesar
Traditional AyAz[stab(z, y)] stab(b, ¢)

Classical Davidsonian AyAzAe[stab(e, z, y)] He[stah(e b, e)]
Neo-Davidsonian Ae[stab(e)] Je[stab(e) A ag(e, b) A th(e, ¢)]
Landman (1996) AyAzde[stab(e) A ag(e, z) A th(e,y)] Te[stab(e, b, c)]

Kratzer (2000) AyAe[stab(e, y)] Jelag(e, b) A stab(e, c)]

Pustejovsky - Brandeis Computational Event Models

Event Argument

« Verbs have an implicit event argument
(1) [stab] = AyAzAe[stab(e, =, y)]
+ Verbal modifiers apply to the same event variable

(2) a. [atnoon] = Ae[time(e, noon))
b. [in the forum] = Ae[loc(e, tz.forum(z))]

« The event argument is bound by existential closure
(3) [Brutus stabbed Caesar] = Je[stab(e, brutus, caesar)|
+ (Arguments and) modifiers are additional conjuncts

(4) [Brutus stabbed Caesar at noon| = Je[stab(e, brutus, caesar) A time(e, noon))

Pustejovsky - Brandeis Computational Event Models

Davidson (1967)

Notice that adverbial and prepositional modifiers add
complementary information to this core event.

(18) a. Brutus stabbed Caesar in the Forum with a knife.
b. Jedx[stab(Brutus, Caesar, e) Ain(e, Forum) A knife(x) A
with(e, x)]

(19) Jedx|stab(e) A AG(e, Brutus) A PAT(e, Caesar) A
LOC(e, Forum) A knife(x) A INST(e, x)]

Pustejovsky - Brandeis Computational Event Models

Parsons (1990)

Parsons develops an interpretation of events that introduces a
distinction between an event culminating (Cul) versus an event
holding (Hold). This makes it possible to distinguish the telicity
associated with a sentence. Hence, for an event, e, and a temporal
interval, t, the following relations hold:

(20) a. TELIC EVENTS (achievements, accomplishments):
Cul(e,t)
b. ATELIC EVENTS (processes, states): Hold(e,t)

Returning to the sentence in (18a), we now modify the logical
form in (19) to that below in (21).

(21) JeTtIx[stab(e) A AG(e, Brutus) A PAT(e, Caesar) A
LocC(e, Forum) A knife(x) A
INST(e, x) A Cul(e, t)]

Pustejovsky - Brandeis Computational Event Models

Function Application

With event argument: £ stands for type v — t.

(22) a. Mary, m:e
b. sleep, Ax\e[sleep(e,x)]: e - (v —t)
c. APPLY Ax\e[sleep(e,x)](m) = Ae[sleep](e,m): &

Pustejovsky - Brandeis Computational Event Models

Events and Thematic Roles

(5) a. [[agent]] = AzXe[ag(e) = 7]
b. [[theme]] = Az\e[th(e) = z]
c. [stab] = Ae[stab(e)]

Applying the thematic roles gives:

d. [[ag] Brutus| = Ae[ag(e) = brutus]
e. [[th] Caesar] = Ae[ag(e) = caesar]
f. [Brutus stab Caesar] = (5¢) N (5d) N (s€) (sentence radical)
g. [Brutus stabbed Caesar| = Je.c € (5¢) N (5d) N (5e) (full sentence)

Pustejovsky - Brandeis Computational Event Models

Quantifiers with Event Semantics

@ The event quantifier always takes the lowest scope relative to
other quantifiers.

(1) No dog barks.

(2) a —Jz[dog(x) A Je[bark(e) A ag(e, z)]] No >> Je

“There is no barking event that is done by a dog”
b. *Je[-Jz[dog(z) A bark(e) A ag(e, z)]|
“There is an event that is not a barking by a dog”

*Je >> No

(1) Every dog barks.

(59 a Vaz[dog(z) — Je[bark(e) A ag(e) =]| EVERY >> Je
“For every dog there is a barking event that it did”

b. *JeVz|dog(z) — [bark(e) A ag(e) = z]|
“There is a barking event that was done by every dog”

Pustejovsky - Brandeis Computational Event Models

*Je >> EVERY

Following Kratzer (1996)

@ Spot barks.

iy
Jde.bark(e) A ag(e, spot)

T

[existential closure] VoiceP
AV.3e[V(e)] Ae.bark(e) A ag(e, spot)

Voice’
| Az)e.bark(e) A ag(e, x)
Spot /\
spot [agent]

Az de.ag(e, x) |
barks

Ae.bark(e)

Pustejovsky - Brandeis Computational Event Models

Kratzer (1996) invents an “event identification” rule that combines the Voice head (agent)
with the VP.

(6) (e vt) g {vt) =h: (e, vt)

Azde.ag(e,x) Aebark(e) Azdeag(e, z) Abark(e)
(Kratzer’s event identification rule)

Pustejovsky - Brandeis Computational Event Models

—3z[dog(z) A Je[bark(e) A ag(e, x)]

DP AzJe.bark(e) A ag(e,)

TN

no dog 1 i3
AP.—~3z[dog(z) A P(z)] Je.bark(e) A ag(e, g(1))

N

[existential closure] VoiceP
AV.3e[V (e)] Ae.bark(e) A ag(e, g(1))
T
DP Voice’
\ Az de.
t bark()
A ag(e, x)

/\

[agent]
AzAe.ag(e,) \
barks

Xe.bark(e)

Pustejovsky - Brandeis Computational Event Models

Champollion (201

(8) a Old Neo-Davidsonian approach: [kiss] = Ae.kiss(e)
b. This approach: [kiss] = Afy.Je.kiss(e) A f(e)
(derivable from (8a) by Partee (1987)’s type-shifting principle A; other inspira-
tions: existential closure, bare plurals, continuation semantics)

+ Start with a verb and successively apply its arguments and adjuncts to it, as in event
semantics. But the verb is now of type (vt. t) (where v is the type of events)

« Compared to syntactic approaches, putting existential closure into the lexical entry of the
verb will automatically derive the fact that all other quantifiers always have to take scope
above existential closure.

« Every argument/adjunct is a function from (vt, t) to (vt, t).

(9) [kiss Mary] = Af.3e kiss(e) A f(e) A th(e) = mary

Pustejovsky - Brandeis Computational Event Models

Champollion

+ On the old approach, a verb phrase had to apply to an event, but there was no single event
to which a verb phrase like “kiss every girl” could apply. Now, “kiss every girl” applies to
any set of events that contains a potentially different kissing event for every girl. Noun
phrases can retain their usual analysis as quantifiers over individuals.

(10) [kiss every girl] = Af.Vz.girl(z) — Je.kiss(e) A f(e) Ath(e) ==z

« Noun phrases can retain their usual analysis as quantifiers over individuals. I assume that
proper names are Montague-lifted to that type.

(11) a [every girl] = APVz.girl(z) = P(x)
b. [John] = AP.P(john)

Pustejovsky - Brandeis Computational Event Models

Champollion (2015)

@ John kissed every girl.

CP:t
Vagirl(z) —
Je[kiss(e) A ag(e) = john A th(e) = z]]

[closure] : vt P (ut,1)
Ae.true AfValgirl(z) —
elkiss(e) A f(e) A ag(e) = john A th(e) = 1]

DP: ((ut, 1), (vt) VP : (v, 1)
AVALV (Ae[f(e) A ag(e) = john]) AfVrlgirl(z) —
Je[kiss(e) A f(e) A th(e) = z]]
john : (et, t)
AP.P(john)
Kissed ¢ (vt) DP: ((vt, 1), (vt 1))
Qz.V(Ae[f(e) Af3elkiss(e) A f(e)] AV S Va[girl(z) —
Nag(e) = a])) V(Ae.[f(e) A th(e) = a])]
every girl : [th] : ((et, 1),
APYalgirl(z) = P(z)] (vt 1), (v, 1))
AQAVAS.
Q. V(Ae.[f(e)

Ath(e) = =)

Pustejovsky - Brandeis Computational Event Models

Negation and Adverbials

- Like other verbal modifiers, we can give negation the semantic type {{vt, ¢}, (vt, t}).

» Negation has been considered particularly difficult for event semantics because it leads to
apparent scope paradoxes (Krifka 1989).

For-adverbials can take scope both above negation and below it
(Smith 1975):

@ John did not laugh for two hours.

e For two hours, it was not the case that John laughed.
o It was not the case that John laughed for two hours.

Pustejovsky - Brandeis Computational Event Models

Negation and Adverbials

- Like other verbal modifiers, we can give negation the semantic type {{vt, ¢}, (vt, t}).

» Negation has been considered particularly difficult for event semantics because it leads to
apparent scope paradoxes (Krifka 1989).

For-adverbials can take scope both above negation and below it
(Smith 1975):

@ John did not laugh for two hours.

e For two hours, it was not the case that John laughed.
o It was not the case that John laughed for two hours.

Pustejovsky - Brandeis Computational Event Models

Events as Instants or Intervals

» Instants are durationless. They represent the meeting-points
of contiguous intervals. E.g., “2.45 p.m. exactly”.
» Intervals have duration. An interval is bounded by instants at
the beginning and end. Instants may be
» “Standard”: 1812, June 1812, 24th June 1812.

> “Arbitrary”: from 4 p.m. to 5.30 p.m. on 24th June 1812.
» Defined by events: The reign of Louis XIV.

Instants
. ~_

//’/ / g
e / e
| | | |

1
A
\ - /
T~/
Intervals

Pustejovsky - Brandeis Computational Event Models

Events as Instants or Intervals

Which is more fundamental, the instant or the interval?

If instants are fundamental, then an interval can be specified by
means of its beginning and end points:

i = (t1,t2) (where t; < to)
where x < y is read ‘x precedes y'.

You might (but don’t have to) then identify the interval with the
set of instants falling between the two ends:

i={t|t1 <t=<t}

where x <y < z is short for (x < y) A (y < z).

Pustejovsky - Brandeis Computational Event Models

Events as Instants or Intervals

If intervals are fundamental, then an instant can be specified by
means of a pair of intervals:

(ih,i) (where ii|h)
(x|y is read ‘x meets y').
Then we define equality for instants by
(i1, i2) = (1, J2) =def i1 |j2 N1 | fa-

In effect, we are defining an instant as an equivalence class of
interval-interval pairs.

Pustejovsky - Brandeis Computational Event Models

Events as Instants or Intervals

Primitive relation: ¢t < t/
Interpretation: Instant t precedes (i.e., is earlier than) instant t'.

A predecessor of instant t is any instant t’ such that t' < t.
A successor of instant t is any instant t’ such that t < t'.

The formal properties of the ordering of the instants are expressed
by means of axioms written as first-order formulae.

In any application context, the axioms should be chosen to capture
the properties of the temporal ordering that are required for
reasoning within that context. In principle, different applications
may require different models of time (there is not “one true
model” for time — probably).

Pustejovsky - Brandeis Computational Event Models

Note: We use the convention that unless otherwise indicated, all
individual variables are understood as universally quantified.

» Irreflexive:

TI -(t<t)

» Transitive:
TT (t=<t)A({ <t")—t=<t"

From Tl and TT we can infer [Exercise!]

» Asymmetric:

TA t<t — (' <t)

Pustejovsky - Brandeis Computational Event Models

